PHP实现图的邻接矩阵表示及几种简单遍历算法分析
这篇文章主要介绍了PHP实现图的邻接矩阵表示及几种简单遍历算法,结合实例形式分析了php基于邻接矩阵实现图的定义及相关遍历操作技巧,需要的朋友可以参考下
本文实例讲述了PHP实现图的邻接矩阵表示及几种简单遍历算法,分享给大家供大家参考,具体如下:
在web开发中图这种数据结构的应用比树要少很多,但在一些业务中也常有出现,下面介绍几种图的寻径算法,并用PHP加以实现.
佛洛依德算法,主要是在顶点集内,按点与点相邻边的权重做遍历,如果两点不相连则权重无穷大,这样通过多次遍历可以得到点到点的最短路径,逻辑上最好理解,实现也较为简单,时间复杂度为O(n^3);
迪杰斯特拉算法,OSPF中实现最短路由所用到的经典算法,djisktra算法的本质是贪心算法,不断的遍历扩充顶点路径集合S,一旦发现更短的点到点路径就替换S中原有的最短路径,完成所有遍历后S便是所有顶点的最短路径集合了.迪杰斯特拉算法的时间复杂度为O(n^2);
克鲁斯卡尔算法,在图内构造最小生成树,达到图中所有顶点联通.从而得到最短路径.时间复杂度为O(N*logN);
- <?php
- /**
- * PHP 实现图邻接矩阵
- */
- class MGraph{
- private $vexs; //顶点数组
- private $arc; //边邻接矩阵,即二维数组
- private $arcData; //边的数组信息
- private $direct; //图的类型(无向或有向)
- private $hasList; //尝试遍历时存储遍历过的结点
- private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
- private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
- private $primVexs; //prim算法时保存顶点
- private $primArc; //prim算法时保存边
- private $krus;//kruscal算法时保存边的信息
- public function MGraph($vexs, $arc, $direct = 0){
- $this->vexs = $vexs;
- $this->arcData = $arc;
- $this->direct = $direct;
- $this->initalizeArc();
- $this->createArc();
- }
- private function initalizeArc(){
- foreach($this->vexs as $value){
- foreach($this->vexs as $cValue){
- $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
- }
- }
- }
- //创建图 $direct:0表示无向图,1表示有向图
- private function createArc(){
- foreach($this->arcData as $key=>$value){
- $strArr = str_split($key);
- $first = $strArr[0];
- $last = $strArr[1];
- $this->arc[$first][$last] = $value;
- if(!$this->direct){
- $this->arc[$last][$first] = $value;
- }
- }
- }
- //floyd算法
- public function floyd(){
- $path = array();//路径数组
- $distance = array();//距离数组
- foreach($this->arc as $key=>$value){
- foreach($value as $k=>$v){
- $path[$key][$k] = $k;
- $distance[$key][$k] = $v;
- }
- }
- for($j = 0; $j < count($this->vexs); $j ++){
- for($i = 0; $i < count($this->vexs); $i ++){
- for($k = 0; $k < count($this->vexs); $k ++){
- if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
- $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
- $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
- }
- }
- }
- }
- return array($path, $distance);
- }
- //djikstra算法
- public function dijkstra(){
- $final = array();
- $pre = array();//要查找的结点的前一个结点数组
- $weight = array();//权值和数组
- foreach($this->arc[$this->vexs[0]] as $k=>$v){
- $final[$k] = 0;
- $pre[$k] = $this->vexs[0];
- $weight[$k] = $v;
- }
- $final[$this->vexs[0]] = 1;
- for($i = 0; $i < count($this->vexs); $i ++){
- $key = 0;
- $min = $this->infinity;
- for($j = 1; $j < count($this->vexs); $j ++){
- $temp = $this->vexs[$j];
- if($final[$temp] != 1 && $weight[$temp] < $min){
- $key = $temp;
- $min = $weight[$temp];
- }
- }
- $final[$key] = 1;
- for($j = 0; $j < count($this->vexs); $j ++){
- $temp = $this->vexs[$j];
- if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){
- $pre[$temp] = $key;
- $weight[$temp] = $min + $this->arc[$key][$temp];
- }
- }
- }
- return $pre;
- }
- //kruscal算法
- private function kruscal(){
- $this->krus = array();
- foreach($this->vexs as $value){
- $krus[$value] = 0;
- }
- foreach($this->arc as $key=>$value){
- $begin = $this->findRoot($key);
- foreach($value as $k=>$v){
- $end = $this->findRoot($k);
- if($begin != $end){
- $this->krus[$begin] = $end;
- }
- }
- }
- }
- //查找子树的尾结点
- private function findRoot($node){
- while($this->krus[$node] > 0){
- $node = $this->krus[$node];
- }
- return $node;
- }
- //prim算法,生成最小生成树
- public function prim(){
- $this->primVexs = array();
- $this->primArc = array($this->vexs[0]=>0);
- for($i = 1; $i < count($this->vexs); $i ++){
- $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
- $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
- }
- for($i = 0; $i < count($this->vexs); $i ++){
- $min = $this->infinity;
- $key;
- foreach($this->vexs as $k=>$v){
- if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){
- $key = $v;
- $min = $this->primArc[$v];
- }
- }
- $this->primArc[$key] = 0;
- foreach($this->arc[$key] as $k=>$v){
- if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){
- $this->primArc[$k] = $v;
- $this->primVexs[$k] = $key;
- }
- }
- }
- return $this->primVexs;
- }
- //一般算法,生成最小生成树
- public function bst(){
- $this->primVexs = array($this->vexs[0]);
- $this->primArc = array();
- next($this->arc[key($this->arc)]);
- $key = NULL;
- $current = NULL;
- while(count($this->primVexs) < count($this->vexs)){
- foreach($this->primVexs as $value){
- foreach($this->arc[$value] as $k=>$v){
- if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
- if($key == NULL || $v < current($current)){
- $key = $k;
- $current = array($value . $k=>$v);
- }
- }
- }
- }
- $this->primVexs[] = $key;
- $this->primArc[key($current)] = current($current);
- $key = NULL;
- $current = NULL;
- }
- return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc);
- }
- //一般遍历
- public function reserve(){
- $this->hasList = array();
- foreach($this->arc as $key=>$value){
- if(!in_array($key, $this->hasList)){
- $this->hasList[] = $key;
- }
- foreach($value as $k=>$v){
- if($v == 1 && !in_array($k, $this->hasList)){
- $this->hasList[] = $k;
- }
- }
- }
- foreach($this->vexs as $v){
- if(!in_array($v, $this->hasList))
- $this->hasList[] = $v;
- }
- return implode($this->hasList);
- }
- //广度优先遍历
- public function bfs(){
- $this->hasList = array();
- $this->queue = array();
- foreach($this->arc as $key=>$value){
- if(!in_array($key, $this->hasList)){
- $this->hasList[] = $key;
- $this->queue[] = $value;
- while(!emptyempty($this->queue)){
- $child = array_shift($this->queue);
- foreach($child as $k=>$v){
- if($v == 1 && !in_array($k, $this->hasList)){
- $this->hasList[] = $k;
- $this->queue[] = $this->arc[$k];
- }
- }
- }
- }
- }
- return implode($this->hasList);
- }
- //执行深度优先遍历
- public function excuteDfs($key){
- $this->hasList[] = $key;
- foreach($this->arc[$key] as $k=>$v){
- if($v == 1 && !in_array($k, $this->hasList))
- $this->excuteDfs($k);
- }
- }
- //深度优先遍历
- public function dfs(){
- $this->hasList = array();
- foreach($this->vexs as $key){
- if(!in_array($key, $this->hasList))
- $this->excuteDfs($key);
- }
- return implode($this->hasList);
- }
- //返回图的二维数组表示
- public function getArc(){
- return $this->arc;
- }
- //返回结点个数
- public function getVexCount(){
- return count($this->vexs);
- }
- }
- $a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
- $b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值
- $test = new MGraph($a, $b);
- print_r($test->bst());
运行结果:
- Array
- (
- [vexs] => Array
- (
- [0] => a
- [1] => b
- [2] => f
- [3] => i
- [4] => c
- [5] => g
- [6] => h
- [7] => e
- [8] => d
- )
- [arc] => Array
- (
- [ab] => 10
- [af] => 11
- [bi] => 12
- [ic] => 8
- [bg] => 16
- [gh] => 19
- [he] => 7
- [hd] => 16
- )
- )