利用k-means聚类算法识别图片主色调
由于使用php来写图片主色调识别功能太麻烦了,所以我给大家介绍利用利用k-means聚类算法识别图片主色调方法.
识别图片主色调这个,网上貌似有几种方法,不过最准确,最优雅的解决方案还是利用聚类算法来做.
直接上代码,不过,我测试结果表示,用PHP来做,效率不佳,PHP不适合做这种大规模运算,用nodejs做效率可以高出100倍左右,代码如下:
- <?php
- $start = microtime(TRUE);
- main();
- function main($img = ‘colors_files/T1OX3eXldXXXcqfYM._111424.jpg’)
- {
- list($width, $height, $mime_code) = getimagesize($img);
- //开源代码phpfensi.com
- $im = null;
- $point = array();
- switch ($mime_code)
- {
- # jpg
- case 2:
- $im =imagecreatefromjpeg($img);
- break;
- # png
- case 3:
- default:
- exit(‘擦 ,什么图像?解析不了啊’);
- }
- $new_width = 100;
- $new_height = 100;
- $pixel = imagecreatetruecolor($new_width, $new_height);
- imagecopyresampled($pixel, $im, 0, 0, 0, 0, $new_width, $new_height, $width, $height);
- run_time();
- $i = $new_width;
- while ($i–)
- {
- # reset高度
- $k = $new_height;
- while ($k–)
- {
- $rgb = ImageColorAt($im, $i, $k);
- array_push($point, array(‘r’=>($rgb >> 16) & 0xFF, ‘g’=>($rgb >> 8) & 0xFF, ‘b’=>$rgb & 0xFF));
- }
- }
- imagedestroy($im);
- imagedestroy($pixel);
- run_time();
- $color = kmeans($point);
- run_time();
- foreach ($color as $key => $value)
- &nb
- sp; {
- echo ‘<br><span style=“background-color:’ . RGBToHex($value[0]) . ‘” >’ . RGBToHex($value[0]) . ‘</span>’;
- }
- }
- function run_time()
- {
- global $start;
- echo ‘<br/>消耗:’, microtime(TRUE) – $start;
- }
- function kmeans($point=array(), $k=3, $min_diff=1)
- {
- global $ii;
- $point_len = count($point);
- $clusters = array();
- $cache = array();
- for ($i=0; $i < 256; $i++)
- {
- $cache[$i] = $i*$i;
- }
- # 随机生成k值
- $i = $k;
- $index = 0;
- while ($i–)
- {
- $index = mt_rand(1,$point_len-100);
- array_push($clusters, array($point[$index], array($point[$index])));
- }
- run_time();
- $point_list = array();
- $run_num = 0;
- while (TRUE)
- {
- foreach ($point as $value)
- {
- $smallest_distance = 10000000;
- # 求出距离最小的点
- # index用于保存point最靠近的k值
- $index = 0;
- $i = $k;
- while ($i–)
- {
- $distance = 0;
- foreach ($value as $key => $p1)
- {
- &n
- bsp; if ($p1 > $clusters[$i][0][$key])
- {
- $distance += $cache[$p1 - $clusters[$i][0][$key]];
- }
- else
- {
- $distance += $cache[$clusters[$i][0][$key] – $p1];
- }
- }
- $ii++;
- if ($distance < $smallest_distance)
- {
- $smallest_distance = $distance;
- $index = $i;
- }
- }
- $point_list[$index][] = $value;
- }
- $diff = 0;
- # 1个1个迭代k值
- $i = $k;
- while ($i–)
- {
- $old = $clusters[$i];
- # 移到到队列中心
- $center = calculateCenter($point_list[$i], 3);
- # 形成新的k值集合队列
- $new_cluster = array($center, $point_list[$i]);
- $clusters[$i] = $new_cluster;
- # 计算新的k值与队列所在点的位置
- $diff = euclidean($old[0], $center);
- }
- # 判断是否已足够聚合
- if ($diff < $min_diff)
- {
- break;
- >
- }
- }
- echo ‘—>’.$ii;
- return $clusters;
- }
- # 计算2点距离
- $ii = 0;
- function euclidean($p1, $p2)
- {
- $s = 0;
- foreach ($p1 as $key => $value)
- {
- $temp = ($value – $p2[$key]);
- $s += $temp*$temp;
- }
- return sqrt($s);
- }
- # 移动k值到所有点的中心
- function calculateCenter($point_list, $attr_num) {
- $vals = array();
- $point_num = 0;
- $keys = array_keys($point_list[0]);
- foreach($keys as $value)
- {
- $vals[$value] = 0;
- }
- foreach ($point_list as $arr)
- {
- $point_num++;
- foreach ($arr as $key => $value)
- {
- $vals[$key] += $value;
- }
- }
- foreach ($keys as $index)
- {
- $vals[$index] = $vals[$index] / $point_num;
- }
- return $vals;
- }
- function RGBToHex($r, $g=”, $b=”)
- {
- if (is_array($r))
- {
- $b = $r['b'];
- $g = $r['g'];
- $r = $r['r'];
- }
- $hex = “#”;
- $hex.= str_pad(dechex($r), 2, ’0′, STR_PAD_LEFT);
- $hex.= str_pad(dechex($g), 2, ’0′, STR_PAD_LEFT);
- $hex.= str_pad(dechex($b), 2, ’0′, STR_PAD_LEFT);
- return $hex;
- }
- ?>